大数据工程师可以做大数据开发工作,开发,建设,测试和维护架构,负责公司大数据平台的开发和维护,负责大数据平台持续集成相关工具平台的架构设计与产品开发等。
大数据工程师可以做数据挖掘工作,数据建模、机器学习和算法实现,商业智能,用户体验分析,预测流失用户等,需要过硬的数学和统计学功底以外,对算法的代码实现也有很高的要求。
1、计算机编码能力:实际开发能力和大规模的数据处理能力是作为大数据工程师必须要掌握的能力,现在人们在社交网络上所产生的许多记录都是非结构化的数据,如何从这些毫无头绪的信息中提取有用数据呢,这就需要大数据工程师来做。
2、.大数据架构工具与组件:企业大数据框架的搭建,多是选择基于开源技术框架来实现的,这其中就包括Hadoop、Spark、Storm、Flink为主的一系列组件框架,及其生态圈组件。
3、数据仓库和ETL工具:数据仓库和ETL能力对于大数据工程师至关重要。像Redshift或Panoply这样的数据仓库解决方案,以及ETL工具,比如StitchData或Segment都非常有用。
大数据技术专业可以从事的工作有这些:
视数据的机构已经越来越多,上到国防部,下到互联网创业公司、金融机构需要通过大数据项目来做创新驱动,需要数据分析或处理岗位也很多;常见的食品制造、零售电商、医疗制造、交通检测等也需要数据分析与处理,如优化库存,降低成本,预测需求等。人才主要分成三大类:大数据系统研发类、大数据应用开发类、大数据分析类,热门岗位有:
1.大数据系统架构师
大数据平台搭建、系统设计、基础设施。技能:计算机体系结构、网络架构、编程范式、文件系统、分布并行处理等。
2.大数据系统分析师
面向实际行业领域,利用大数据技术进行数据安全生命周期管理、分析和应用。技能:人工智能、机器学习、数理统计、矩阵计算、优化方法。
3.hadoop开发工程师。
解决大数据存储问题。
4.数据分析师
不同行业中,专门从事行业数据搜集、整理、分析,并依据数据做出行业研究、评估和预测的专业人员。在工作中通过运用工具,提取、分析、呈现数据,实现数据的商业意义。
作为一名数据分析师,至少需要熟练SPSS、STATISTIC、Eviews、SAS、大数据魔镜等数据分析软件中的一门,至少能用Acess等进行数据库开发,至少掌握一门数学软件如matalab、mathmatics进行新模型的构建,至少掌握一门编程语言。总之,一个优秀的数据分析师,应该业务、管理、分析、工具、设计都不落下。
5.数据挖掘工程师
做数据挖掘要从海量数据中发现规律,这就需要一定的数学知识,最基本的比如线性代数、高等代数、凸优化、概率论等。经常会用到的语言包括Python、Java、C或者C++,有时用MapReduce写程序,再用Hadoop或者Hyp来处理数据,如果用Python的话会和Spark相结合
6.大数据可视化工程师
随着大数据在人们工作及日常生活中的应用,大数据可视化也改变着人类的对信息的阅读和理解方式。从百度迁徙到谷歌流感趋势,再到阿里云推出县域经济可视化产品,大数据技术和大数据可视化都是幕后的英雄
大数据可视化工程师岗位职责:1、 依据产品业务功能,设计符合需求的可视化方案。2、 依据可视化场景不同及性能要求,选择合适的可视化技术。3、 依据方案和技术选型制作可视化样例。4、 配合视觉设计人员完善可视化样例。5、 配合前端开发人员将样例组件化。
想了解更多大数据从事工作的问题, “CDA 数据分析师”具体指在互联网、金融、零售、咨询、电信、医疗、旅游等行业专门从事数据的采集、清洗、处理、分析并能制作业务报告、 提供决策的新型数据分析人才。
大数据开发工程师以后可以从事哪些岗位?
大数据开发工程师可以从事以下岗位:
1. 大数据工程师:负责搭建大数据平台、开发和优化数据处理系统和数据仓库。
2. 数据架构师:负责设计和管理企业的数据架构,确保数据在系统中的完整性和一致性。
3. 数据仓库架构师:负责设计和开发数据仓库,使商业智能系统从中获取可靠数据以支持业务决策。
4. 数据科学家:利用数据分析和统计技术帮助企业发现数据中的重要信息,提供商业洞察。
5. 机器学习工程师:建立机器学习系统以自动化数据分析和预测,提供高效率和精度。
6. 数据分析师:负责分析和解释数据,评估业务决策并提供指导建议。
7. 数据治理专员:开发和执行数据治理策略,确保数据质量和信息安全。
8. 数据质量工程师:负责创建和执行数据质量检查和验证规则,保证数据准确性和完整性。
9. 数据基础架构工程师:管理和优化企业数据基础设施的表现和可靠性,以支持各种业务用例。
10. 大数据系统管理员:监测和维护大数据平台性能,并对系统中的错误进行排除,确保系统满足业务需求。