首页 > 简历攻略 > 如何写数据分析报告

如何写数据分析报告

2024-02-04 13:14:51

如何写数据分析报告

怎样用PPT 做数据分析

【工具准备】

1.PPT2007(原始载体)

2.EXCEL2007(制作图表)

3.Colorpix(配色)

4.系统自带画图工具(截图)

5.美图秀秀(图片美化)

【制图步骤】

1.    量体裁衣

通常数据信息图的宽度在400-1000像素之间(100像素约3.53厘米),高度则视具体内容而定,在不确定内容占多少屏的情况下最好长一些,这样后期制作完成后还可以通过截图的方式去除多余空白部分。具体大小设置如下图:

随后可通过更换幻灯片主题的方式将主基调背景颜色确定,这样数据信息图的背景布已基本确定。当然也可以使用一些国外的工具,来配置自己喜欢的背景图,譬如stripemania 、tartanmaker 、bgpatterns、stripegenerator这些网页背景制作工具。

2.    内容填充

这里将整个数据信息图拆分为3部分,信息图标题、主要内容展示和备注说明,其中备注说明部分也可以放在内容展示部分。至于主题和内容展示内容,则全凭个人需求而定,比如网络上流传的较多的《一张图读懂“xx”》系列图。

内容展示部分图表制作这里也不做详细介绍,要想EXCEL图表做的漂亮,样式新颖可参阅刘万翔老师的《EXCEL图表之道》一书,一些特定图表的制作大家也可以参见图表汇博客中的相关制图汇总,这里需要注意的是:

EXCEL制图时丰富颜色的选取,这里推荐colorpix小工具;

数据信息图尽量将图表做得美观形象,所以图表填充可用一些形象的图片代替;

将EXCEL图片复制到PPT中前,尽量先将图表转换为图片格式,避免在PPT中调整大小时图表失真。

3.    样式转换(将PPT转化成图片格式)

一个主题,一张图表,将PPT完成后,另存为图片格式即可。多于的边边角角部分则可通过Windows系统自带的附件绘图工具截图部分截除。

4.    加工美化

加工美化使用的工具主要是美图秀秀,这里使用的主要是其美化功能,对图片背景做微调处理。

【一个案例】

贴一个用PPT制作的数据信息图案例。

如何写数据分析报告

数据分析工作报告5篇

【 #报告# 导语】工作报告是指向上级机关汇报本单位、本部门、本地区工作情况、做法、经验以及问题的报告。以下是 整理的数据分析工作报告,欢迎阅读!

1.数据分析工作报告


在数据分析岗位工作三个月以来,在公司领导的正确领导下,深入学习关于淘宝网店的相关知识,我已经从一个网店的门外汉成长为对网店有一定了解和认知的人。现向公司领导简单汇报一下我三个月以来的工作情况。

一、虚心学习

努力提高网店数据分析方面的专业知识作为一个食品专业出身的人,刚进公司时,对网店方面的专业知识及网店运营几乎一无所知,曾经努力学习掌握的数据分析技能在这里根本就用不到,我也曾怀疑过自己的选择,怀疑自己对踏出校门的第一份工作的选择是不是冲动的。

但是,公司为我提供了宽松的学习环境和专业的指导,在不断的学习过程中,我慢慢喜欢上自己所选择的行业和工作。一方面,虚心学习每一个与网店相关的数据名词,提高自己在数据分析和处理方面的能力,坚定做好本职工作的信心和决心。另一方面,向周围的同同事学习业务知识和工作方法,取人之长,补己之短,加深了与同事之间的感情。

二、踏实工作

努力完成领导交办的各项工作任务三个月来,在领导和同事们的支持和配合下,自己主要做了一下几方面的工作

1、汇总公司的产品信息日报表,并完成信息日报表的每日更新,为产品追单提供可靠依据。

2、协同仓库工作人员盘点库存,汇总库存报表,每天不定时清查入库货品,为各部门的同事提供最可靠的库存数据。

3、完成店铺经营月报表、店铺经营日报表。

4、完成每日客服接待顾客量的统计、客服工作效果及工作转化率的查询。

5、每日两次对店铺里出售的宝贝进行逐个排查,保证每款宝贝的架上数的及时更新,防止出售中的宝贝无故下架。

6、配合领导和其他岗位的同事做好各种数据的查询、统计、分析、汇总等工作。做好数据的核实和上报工作,并确保数据的准确性和及时性。

7、完成领导交代的其它各项工作,认真对待、及时办理、不拖延、不误事、不敷衍,尽量做到让领导放心和满意。

三、存在的不足及今后努力的方向

三个月来,在公司领导和同事们的指导和配合下,自己虽然做了一些力所能及的工作,但还存在很多的不足,主要是阅历浅,经验少,有时遇到相对棘手的问题考虑欠周密,视角不够灵活,缺乏应变能力;理论和专业知识不够丰富,导致工作有时处于被动等等。

另外,由于语言不通的问题,在与周围的同事沟通时,存在一定的障碍。

针对以上不足,在今后的工作中,自己要加强学习、深入实践、继续坚持正直、谦虚、朴实的工作作风,摆正自己的位置,尊重领导,团结同事,把网店的数据分析工作做细做好。

四、对公司人员状况及员工工作状态的分析

1、对公司人员状况的分析要想管好一个企业,首先要管好这个企业的人,要想管好一个企业的人,首先要对这个企业人员的基本情况有个比较全面的、细致的、科学的正确的了解。

目前公司成员大部分为90后,是一个年轻化的团队。他们大部分在长辈们的宠爱中长大,心理素质不怎么成熟,没有自信心,没有目标,责任心不强,不怎么能吃苦,心理承受能力较弱,不爱学习,不明白工作的真正意义。不过也有一部分比较懂事,做事比较踏实、勤奋、性格也比较好。

因此,我们在招聘的时候,要招那些肯学习、善于学习、领悟力学习力强的人。不过,这部分人一般都比较现实,对待遇、公正公平、发展空间比较看重。

其实,我们要想打造一流的企业,培养一流的`员工,一流的管理人员并不是难事。最重要的是要有一颗真正的,持之以恒的做事业的心。

2、对员工工作状态的分析目前,部分岗位存在分工不明确的现象,出现问题时,同事之前相互推诿,不愿意承担责任,这也是部分员工责任心不强的最直接反映。部分员工没有团队合作意识,这就可能导致工作在某个环节衔接不上,进而有可能出现重大问题。

因此,明确分工和加强员工的团队合作意识也是公司目前需要解决的问题。

五、对公司企业文化的分析

企业文化,对我本人来讲,是一个管理学里面比较专业的词,我怕自己讲不好它。但我却可以深刻的体会到,这个无形的东西就在我的周围,在我们的骨髓里。因为我觉得它重要,所以,还是想讲它,而且觉得非讲不可。

在我所走到的企业里,XX集团的企业文化给我留下的印象最深。他们有自己明确的经营理念、经营目标、公司训、公司口号、企业标识、公司社歌和独立的传媒机构。他们的企业文化具有很强的感染力和凝聚力。但是,很长一段时间以来,我们的公司一直处在“黎明前的黑暗”之中,为什么公司领导的那种不到山顶不罢休的气势、决心和信心,并没有感染所有的员工,那种不到山顶不罢休的气势、决心和信心并没有很好的变成我们的企业文化。

没有被突出出来,没有在公司发展的日日夜夜中,张扬的体现给我们企业所有的员工们看。甚至是没有被人感觉到。

所以,加强健康向上的企业文化的建设工作,也就成为一种必要。十分的必要。也该引起足够的重视。把目前创业阶段的决心和信心力量、企业和员工相互之间的理解、信任、支持和默契融入到我们的企业文化中去。从而感染和吸引更多的优秀人才到我们中来,共同开创我们企业的未来。

2.数据分析工作报告


一、主要工作情况

1、强化理论和业务的学习。我重视加强理论和业务知识学习,在工作中,坚持一边工作一边学习,不断提高自身综合业务素质水平,认真学习工作业务知识,并结合自己在实际工作中存在的不足有针对性地进行学习,并且参加统计职业资格考试,明确了统计员的工作职责。

2、在工作以来,我始终坚持严格要求自己,勤奋努力,时刻牢记在自己平凡而普通的工作岗位上,努力做好本职工作。在具体工作中,我努力做好领导交给的每一个工作,分清轻重缓急,科学安排时间,按时、按质、按量完成任务。

3、每天及时、准确按销售合同或出入库单的明细填写统计台帐,并及时作好数据的备份。

4、每月底根据本月实际发生情况向总部报送营业收入快报;产值指标月报;劳动工资及保障情况月报;主要产品产、销、存情况月报;能源消费月报表,并存档。

5、年底将部分数据用表格的形式进行汇总与分析。主要有《产成品交库情况统计表》、《公司人员统计表》、《劳动工资及保障情况统计表》、《年度经济活动分析》。

6、参加汇报了《关于做好特色产业中小企业发展资金项目》《XX省工业结构调整项目》的申报工作。

7、每周五向省工信委汇报项目建设完成情况,每月底向省科工局汇报项目进展情况及项目建设存在的问题,每月初向港区经发局、招商局汇报项目完成投资情况和建设完成情况。

二、存在不足

1、在工作中,虽然我不断加强理论知识的学习,努力使自己在各方面走向熟练,但由于自身学识、能力、思想、心理素质等的局限,导致在平时的工作中比较死板、心态放不开,工作起来束手束脚,对工作中的一些问题没有全面的理解与把握。同时由于个人不爱说话,与同事们的沟通和交流很少,工作目标不明确,并且遇到问题请教不多,没有做到虚心学习。

2、身为新时代的大学生,却没有青年人应有的朝气,学习新知识、掌握新东西不够。领导交办的事基本都能完成,但自己不会主动牵着工作走,很被动,而且缺乏工作经验,独立工作能力不足。在工作中不够大胆,总是在不断学习的过程中改变工作方法,而不能在创新中去实践,去推广。

三、工作计划

1、努力完成本职工作之余,学习更多有关财务、统计方面的知识,以提升自己专业学识。

2、积极参加一些和专业有关的培训,有效提高对统计数据的准确性,并做好数据的登记、上报与分析。

3、在原有的各种统计报表基础上,对一些没有实际意义的表格进行改进,并对统计数字的准确性进行加强。

今后工作中我将努力奋斗,无论自己手头的工作有多忙,都服从公司领导的工作安排,遇到工作困难,及时与领导联系汇报,并寻找更好解决问题的办法,继续巩固现有成绩,针对自身的不足加以改进,争取做的更好。

3.数据分析工作报告


一、团队的合作是完成工作的前提

做一份能令领导满意的数据表格不单单是自己一个人闭门造车所能造出来的,需要合理的意见和适当的帮助,自己的制表思路是要在前人的启发下才能发挥出色。

二、精准的数据需要懂得数据的理念和要求,数据的运用

做数据表格是给人一种一目了然的清晰感,怎样把公司的数据信息及时传达公司领导、客户及客户主任尤为重要。准确的数据表格是给领导和客户的第一印象,是直接影响整份表格的进度。信息是及时、全面反映整个企业的精神面貌和工作动态,这就要求及时,迅速,对各部门上报的信息进行整理、加工,对发生的大事对各部门进行催报,使信息管理工作更加规范到位。

三、善于总结,懂得吸取经验

经验是在实际工作在中得到的,把握了经验工作自然就是事半功倍。刚开始做数据表格时,只知道一味的按部就班,缺少灵活性,表格表达不清晰。后来经过不断的摸索,领悟到表格有很多功能是值得我们去参谋的,运用vlookup,sumif等常用公式,让自己变得灵活而具有战斗力。表达最美的效果,这种感觉是要在长期的工作经验中积累起来的。

四、善于沟通,避免出错

做数据表格是在第一份原始资料的基础上做出来的,第一份原始资料就是小马做的数据报表,做数据时遇到什么不明白的需请教,因此信息传递是很重要的,我们要保持信息的畅通性就必须善于沟通,否则出现差错,前功尽弃。所以,一边工作一边总结经验是百利而无一害的。

五、做数据表格要讲究效率和准确

数据的作用是给他人能够更快的看清楚所表达的数据内容,还有重要的是数据准确性及美观,给人一种赏心悦目,心旷神怡的舒服感,具有挑战性的是有一种感觉,就是一眼就分辨得出哪里好,哪里需要改进,哪里需要取。

六、感想

1、数据部是实现自己理想和展现自己技能的平台。能把自己所学知识运用出来是一件值得庆幸的事,安分守己,把自己的工作出色完成对公司是一种责任,对自己是一种交代。

2、认识了很多新同事,交流广泛,知识面丰富了。新的环境必然有新的事物,接收新的事物必然有新的认识,新的认识必然有新的数据理念思想,对自己的专业知识和认识更上一层楼。

3、去旧迎新,迎接新的挑战,自我提升,给自己定下目标。20xx年是奋斗的一年,一年可以实现很多事情,可以改变很多事情,是选择继续奋斗还是碌碌无为,关键在于自己的行动。

只有行动万事皆成事实,所以我给自己定下了三个目标:

1、全面提升自己,工作能独当一面。这样就能提高工作效率,不会延误工作进度。

2、数据能精确化,提高效率。

3、保持一颗上进心,永不熄灭。

最后,祝愿大家新春如意,事业有成,开开心心过一个好年。

4.数据分析工作报告


一、20xx年工作回顾

1、积极学习,自我提高

只有懂生产、了解生产,才能很好的服务生产、监督生产。无论是管理经验,还是业务水平,都与优秀的调度员存在很大的差距。所以,我积极学习,虚心向老工人请教,到车间生产一线,了解生产现状,提高业务技能,提升管理水平。

2、精心调度,合理安排生产

每月月底结合各个分厂下月肉制品大致产量,制定出合理的内转产销量,结合销售部,制定外销产品的产销计划。即保证正常的生产运行,又没有造成不良库存;每日下午根据次日销售订单及发货情况,结合车间实际生产状况及仓库现有库存量,安排合理的次日生产计划,满足市场正常供应;每天依据生产计划,跟踪生产进度,及时正确解决生产中出现的各种问题,保证生产计划及时完成。

3、和各个部门沟通协调,保障生产顺利进行

和集团公司采购部门保持良好的沟通,保证原辅包的及时供应;协助销售部,组织好外销产品的发运工作;和品管部、事业部、技术中心相关人员紧密结合,对生产中出现的问题,及时协调解决,保障生产的顺利进行。

4、充分发挥监督考核职能,做好日常管理工作

从现场卫生、生产过程过程、成本、质量、计划、工艺、安全、库房、数据交接、出门证管理等日常管理工作入手,定期组织相关人员检查,对检查中发现的问题整改落实情况进行跟踪,做好公司的各项日常管理工作。

二、工作中存在的不足

1、管理考核上放不开手脚

以往的工作只注重服务和协调,缺少监督和考核。在管理考核力度上不够,不能够很好的起到监督考核的作用。

2、在对两名新调度员的传帮带工作上没有做好

由于没有很好的对新人做好传帮带的工作,致使两名新调度员在很长的一段时间上找不到工作方向和工作重点。

3、工作的细致度上面还不够精细

由于以往的工作中存在粗心大意,细致度不够,致使个人工作中出现纰漏,出现问题。

三、下一步工作思路

1、谦虚务实、进一步加强学习,全面提高个人综合素质

学海无涯,知识无限。只有不断的学习,才能不断地提高和进步,才能跟得上公司发展的步伐。20xx年公司产品结构面临全面调整转型,将涉足很多新的领域,在新的领域要努力学习,快速掌握各种生产中的技术知识,为公司产品结构的顺利转型做好衔接工作。

2、充分协调好各个方面的资源,确保产供销的顺利进行

合理安排、精心调度,保障好生产、协调好生产、服务好生产、指导好生产、监督好生产,保证生产、销售工作的顺利进行。

3、不断提高工作水平,做好领导助手

多谋才能善断。立足发展变化的新情况,多动脑筋、想办法、出主意,发挥参谋助手作用,不断提高工作水平;强化理论知识学习,进一步提高避免问题发生的预见性;进一步提升责任意识,增强工作的主动性、预见性、创造性,以较高的技术理论素养和业务工作能力为领导出谋划策、查漏补缺,不折不扣的完成领导交付的工作,做好领导的左右手。

4、立足本职工作,工作不留空档

对本职工作一定要抓紧抓好,做到抓一件成一件,件件有交代,项项有落实。其他的工作,也要义不容辞承担起来,做到工作不留空档,确保各项工作全面推进。

5.数据分析工作报告


今年以来,我校加大信息化基础建设,严格落实信息系统安全及保护,从源头做起,不断提升了信息基础安全理念,强化信息技术安全管理和保障,加强对包括设备安全,数据安全,信息安全等信息化建设保障,以信息化促进学院业务管理的精简化和标准化。

一、信息等级化分类,安全分类化保护。

我校网络管理信息化管理现状,自网络信息中心(以下简称中心)成立时起,我中心制订了宿舍网络使用条款服务器托管等安全条款,此八年以来,保障了广大师生网络使用及业务系统安全,未因网络出现重大安全问题,未有因业务系统托管而出现硬件无法修复、数据被盗等基础保障。

1、服务系统保护、上学期我中心开始了安全等级建设,确立了服务系统安全分等级保护目标,重要信息重点保护,次要信息次级保护原则,针对原来一个系统多个应用的服务进行了应用分离,减少一个服务出题问题,多个业务受影响等问题,今年购买了存储服务器和服务器防火墙两个重要基础安全设备,针对我校业务系统保障,对学校、精品资源共享课网、一卡通等数据备份。使用了硬件防火墙对公开业务数据安全保护,现已对、青果系统、数字化校园系统进行IPS保护、WEB应用防护,其它系统进行安全审计防范等安全设施。

2、基础网络保障、今年我中心更换包括核心DCRS7608在内多个老旧网络设备,针对日益流行WIFI设备进行规范管,对宿舍网络WIFI共享禁用,对办公网络WIFI使用教育,谨慎使用开外式网络,减少基础网络隐患。

二、20xx年信息安全工作安排及问题整改。

1、规范流程操作,加强网络信息化教育。我中心要求系统使用部门或使用人员都应该了解信息安全形势,所管理系统的安全等级,遵守谁管理谁负责的原则,掌握操作技能,努力提高系统信息保障能力,对、青果系统、财务系统、图书馆管理系统、一卡通数据系统等业务所属部门要求分配专员管理,提高业务系统信息安全习惯。

2、办公无线网络使用规范,无线网络私建加重,基本每办公室都有职员安装了无线设备,甚至出现了办公室多个职员安装WIFI。需加强网络使用条件规范,区域多个WIFI接入,乱接入等问题整改,对办公室已有无线设备收编,禁止使用360,猎豹,共享精灵等无线热点、软件共享方式。

3、老旧设备更新换代,部分网络设备、服务器设备使用已长达八年之久,部分重要服务器还是原来老式台式机,今年已搬迁了心理系统,电子政务系统至新服务器,还有财务系统,图书管理系统还在老旧服务,难以保障稳定运行。

20xx年是我校信息安全投入历来一年,加强业务系统、基础设备安全及保障、20xx的到来,我中心将加大对网络信息安全管理和安全措施、安全技术力度,保证学院信息安全切实可行。

如何写数据分析报告

如何写数据分析报告

相信很多 数据分析师 在写数据分析报告的时候也会遇到一些困惑,因为我最近也在写一个报告,在这里就梳理一下如何写数据分析报告

数据分析报告是数据分析师常见的工具,写好一份数据分析报告,不但能够清楚描述问题,洞察数据并且提出一些有思考的举措,也很能反映出一个数据分析师的思维和用数据讲故事的能力,网上虽然也有很多关于写好数据分析报告的文章,但是大部分都是偏重于理论,具体实践的很少,我就在这里做一个汇总,希望能帮助一些朋友,以期抛砖引玉

--------分割线--------正式开始--------

一份好的数据分析报告离不开两部分:数据部分和分析部分。巧妇难为无米之炊,数据之于数据分析师就好像食材之于巧妇,数据的重要性可见一斑,分析部分是数据分析师将数据做成报告的最重要一步,是最体现一个数据分析师功底的部分,也是拉开差距的部分,下面就针对两部分分别进行阐述

一. 数据部分

数据部分最重要的就是数据质量,数据质量的好坏直接决定一份数据分析报告的好坏,如果报告中某一个数据被质疑,会直接影响这份数据分析报告的可信度,本章说一说跟数据有关的一些内容

1.数据的质量

1.1数据类型

数据类型比较好理解,就是数据以什么样的类型存储的,不同的数据类型有不同的使用方法,因此在处理数据之前,必须要先了解数据类型,常见的数据类型有(这里只说一些常见的数据类型):

整数型

int :用于存储整数,存储从-2的31次方到2的31次方之间的所有正负整数,每个INT类型的数据按4 个字节存储

bigint :用于存储大整数,存储从-2的63次方到2的63次方之间的所有正负整数,每个BIGINT 类型的数据占用8个字节的存储空间

smallint :用于存储小整数,存储从-2的15次方到2的15次方之间的所有正负整数。每个SMALLINT 类型的数据占用2 个字节的存储空间

浮点型

real :存储的数据可精确到第7 位小数,其范围为从-3.40E -38 到3.40E +38。 每个REAL类型的数据占用4 个字节的存储空间

float :存储的数据可精确到第15  位小数,其范围为从-1.79E -308 到1.79E +308。 每个FLOAT 类型的数据占用8 个字节的存储空间。  FLOAT数据类型可写为FLOAT[ n ]的形式。n 指定FLOAT 数据的精度。n 为1到15 之间的整数值。当n 取1 到7  时,实际上是定义了一个REAL 类型的数据,系统用4 个字节存储它;当n 取8 到15 时,系统认为其是FLOAT 类型,用8 个字节存储它

字符型

char : 数据类型的定义形式为CHAR[ (n) ],n 表示所有字符所占的存储空间,n  的取值为1 到8000, 即可容纳8000 个ANSI 字符。若不指定n 值,则系统默认值为1。  若输入数据的字符数小于n,则系统自动在其后添加空格来填满设定好的空间。若输入的数据过长,将会截掉其超出部分

nchar : 它与CHAR 类型相似。不同的是NCHAR数据类型n 的取值为1 到4000。 因为NCHAR 类型采用UNICODE  标准字符集(CharacterSet)。 UNICODE 标准规定每个字符占用两个字节的存储空间,所以它比非UNICODE  标准的数据类型多占用一倍的存储空间。使用UNICODE  标准的好处是因其使用两个字节做存储单位,其一个存储单位的容纳量就大大增加了,可以将全世界的语言文字都囊括在内,在一个数据列中就可以同时出现中文、英文、 法文 、德文等,而不会出现编码冲突

varchar :VARCHAR数据类型的定义形式为VARCHAR  [ (n) ]。 它与CHAR 类型相似,n 的取值也为1 到8000,  若输入的数据过长,将会截掉其超出部分。不同的是,VARCHAR数据类型具有变动长度的特性,因为VARCHAR数据类型的存储长度为实际数值长度,若输入数据的字符数小于n  ,则系统不会在其后添加空格来填满设定好的空间。一般情况下,由于CHAR 数据类型长度固定,因此它比VARCHAR 类型的处理速度快

时间和日期型

date :‘2018-01-17’

time :‘10:14:00’

timestamp :‘2018-01-17 10:14:00.45’

以上就是常用的数据类型,如果有其他的数据类型没有说到,可以去网上搜一下,都比较好理解

1.2噪音数据

因为网上有非常多的关于噪音数据的解释,都非常专业,我就不在这里做过多的详细解释了,我们只探讨从sql取出数据的时候有一些异常值的处理办法:

null

一般跑过sql的朋友肯定会发现,在跑出来的数据中会有null的情况,这个时候需要对null进行替换,如果是计算用,就把null替换成0,这个步骤可以在sql里面完成,也可以在excel里面完成

极大值

极大值会影响数据的计算结果,一般会进行处理,要么替换成除极大值以外的最大值,要么直接弃用

作为分母的0

如果0作为分母,在excel里会出现#DIV/0,这个时候可以直接把结果替换,或者在sql里面直接进行替换,用case……when……就可以替换

1.3数据的口径

数据的口径很重要,根据经验看,大部分的数据出现问题是口径造成的,数据的口径一定要跟业务的口径一致,拿留存率举例:

留存率是周期比率型指标,一般在计算留存率的时候需要确定 留存周期 和 活跃判定的口径

留存周期:留存周期通俗来讲就是指用户在多长时间范围内活跃,并在下一个周期内仍然活跃,这里的多长时间就是指留存周期

活跃判定:指怎么判定一个用户活跃,可以是启动App,可以是登陆,也可以是完成了一次其他特定行为,这个主要依照业务需求而定

实际计算:

周留存率的计算

分子:本周活跃 且 上周也活跃的用户数

分母:上周活跃的用户数

2.可能会用到的工具

在处理数据的过程中可以用很多工具,在这里就介绍一些比较常见的工具,大家耳熟能详,学起来也不是特变难

2.1提取数据

mysql

hivesql

两者的查询语句有相似的地方也有不同的地方,主要看自己所在公司的数据存储情况

2.2数据处理

python:一般写个脚本做一些机械的操作(我目前是这么用),也可以用来做计算

mysql:在查询的时候可以进行处理

excel:数据量比较小的时候,可以在excel上简单处理

2.3数据可视化

python:可以用来做一些词云图

Tableau:可视化一些图表,可以和sql结合着用

excel:做一些简单的图表,实际上数据处理的好的话,一般用excel就足够了

二. 分析部分

在处理了数据以后就要开始进行报告的撰写,写报告会涉及到几个部分的工作,这里分别进行介绍一下:

1.报告结构

一篇数据分析报告的结构是十分重要的,一个好的结构能够将他人带入到你的报告中,让他人更好的明白你的意图,减少信息传递之间的丢失,同时你的思维也主要展现在结构上,这就意味着在写数据分析报告前,一定好想清楚数据分析报告的结构,当然这里说的报告结构即包括整个报告的结构,也包括每一个章节的结构,这里就放到一起说了

1.1 总 - 分 - 总(多用在整体结构)

我们在读一本书的时候,打开目录,会发现整部书的结构一般包括:

前言

第一篇

第二篇

……

第n篇

结尾

这就是典型的总 - 分 - 总结构,是最常见的结构,如果是对一个专题进行分析,用这种形式是非常好的,举个例子:

某电商App近一个月内的销售额出现下滑,让你针对这个问题进行一次专题分析

分析思路:拿到这个问题,我们很容易想到的是,销售额出现下滑出现的原因有两个,一个是付费用户数减少了,另一个是付费用户的人均付费金额减少了,这两个原因属于并列的原因,不存在递进关系,也就是说付费用户数减少了与人均付费金额减少并不存在因果关系,没有什么相关性,因此需要对两个原因共同分析,最后输出结论和提升建议,分析完以后,会发现总

- 分 - 总结构很适合这样的分析,所以列出以下提纲

问题描述

销售额近一个月下降多少? 绝对值 ,环比,同比数据

原因假设:付费用户数下降/人均付费金额下降

付费用户数下降分析

付费用户数降幅是多少?绝对值,环比,同比数据

定位下降人群:是整体下降还是某一群体用户数下降

这里就涉及到用户分群,用户分群的方法有很多,涉及到用户价值的分群常见的就是 RFM模型 ,将分完群的用户进行数据对比,看看上个月付费用户的结构占比跟本月有什么不同,当然用户分群的方法也不止这一个,还有按照会员等级分群(主要用会员等级进行用户分群),按照活跃程度(新用户/留存用户/回流用户),按照消费习惯(一般用户表里面都会有用户的标签,标识这个用户的消费习惯,表示这个用户更喜欢购买哪一类的商品),不管用什么分群方法,都需要纵向对比,也就是这个月和上个月付费人群的对比

原因分析:

如果是付费用户整体下降(这种是大家都不想看到的现象,欣慰大盘数据的驱动需要投入大量的资源,也有可能是自然波动),考虑可能的原因主要有:用户整体流失,比如用户流失到竟对;或者本月有什么特殊情况,影响到了整体的用户活跃;或者是从活动维度去观察,是不是活动的力度减小,影响了用户付费的欲望

如果是某一个用户群体下降:考虑的原因可能有商品品类的影响,是不是某一类商品在平台没有上架,或者某一类商品涨价;或者这一类用户受到了哪些影响,一般可以从属性和行为角度去分析

提出策略:

针对分析出的原因提出可落地的策略(策略一定要落地,要具体,比如如果你提出一条策略是:提升新注册用户数,那么等于没说,老板多数会diss你,但是你如果说,通过减少注册时填写的非必要字段,如年龄/职业,来简化注册流程,挺升注册转化率,进而提升新注册用户数,那感觉是不一样的)

人均付费金额下降分析

人均付费金额的降幅是多少?绝对值,环比,同比数据

定位原因

人均付费金额下降可能的原因主要有:订单数量下降;每个订单包含的商品数的下降/某一个品类购买数下降

提出策略:针对分析出的原因提出可落地的策略

总结问题

明确造成销售额下降的原因到底是什么(定性以后,记得一定要量化,不量化会被diss)

提出有针对性的建议

如何预防再次发生

1.2 递进(可用于整体结构和章节内部结构)

这种结构适合对一个问题进行探索,就像上一个例子中,我们针对每一个可能原因进行分析的时候,就是采用的这种分析方法,这种分析结构特别适合对一个小问题进行深入的探索分析,层层递进,深挖原因,这里在举一个例子:

某一个App的新注册用户数环比上个月减少,需要你做一个深入的分析,找到原因,提供改进策略

分析思路:新注册用户数的的影响因素是一个典型的漏斗结构,也是一个典型的单向性用户旅程,画一张图就能说明白:

如图所示,影响注册用户数的原因全部标注在漏斗里面,但是注册全流程这个漏斗只能看个大概流失,所以我们会对某一步进行细化,这张图上,我们对用户从启动到注册成功进行细化,细化到用户行为,这样能够提出一些产品上的改进意见,这个时候,如果想要提升新注册用户数,只需要针对每一步流失原因进行分析,找到提升策略就可以了,基本上是所见即所得的分析

比如:我们想对提交注册信息到注册成功这一步进行优化,那么首先我们要找到用户注册失败的原因有什么,一般有:

用户已注册

密码格式不合规

系统错误

未勾选《隐私协议》

在提出建议的时候,只要针对以上原因提出具体改进意见就可以了

1.3并列结构(多用于整体结构)

这种结构一般遇到的情况不多,常见的有对不同的校区进行经营分析/对不同品类的商品进行售卖分析,基本都是以描述型分析为主,因为分析的主体是并列关系,所以只需要每个主体就行单独分析就好,基本采用的分析思路是一样的

1.4因果结构(多用于章节内部结构)

这种结构一般用在复盘分析报告中,复盘是常见的数据分析报告类型之一,也是很多公司比较重视的一个报告,比如双十一复盘/新手活动复盘等等, 以电商某一次大促复盘为例 ,这里直接写结构:

总体描述:

本次大促整体数据表现,整体活动节奏的介绍;销售额是多少,同比提升多少;利润情况;参与用户有多少,同比提升多少;卖出商品有多少,同比提升多少;各个子活动的贡献是多少

子活动1的效果分析

子活动1的简介,作用,发力点

子活动1的贡献是什么,对于直接提升结果指标或者间接提升指标有哪些贡献

子活动1的成本是什么?投入产出比是多少?

子活动2的效果分析

子活动x的效果分析

最后汇总,提出优化建议

2.分析方法

讲完了整体结构,我们就该进入到具体分析的过程里面,这里的分析方法,主要想说说怎么去针对不同的数据进行分析,也就是说怎么通过数据看出问题,这里介绍常用的5种分析方法,但是有一句话非常重要,想写这节的最前面: 数据分析师一定要懂业务,在分析之前最好能把问题定位个大概,再去捞数,再去分析,否则每天会沉浸在漫无目的取数中,我认为一个数据分析师最重要的能力是要懂业务,从数据的角度看业务,才能驱动业务

2.1 对比分析

横向对比

横向对比就是把一个指标按照不同维度拆分,去对比不同维度的变化,举个简单的例子来说就是:

昨天的DAU增长了30%,那么把DAU进行拆分,可以拆分成以下三种方式:

DAU=新注册用户数+留存用户数+回流用户数

DAU=北京活跃用户数+河北活跃用户数+山东活跃用户数+……

DAU=北京活跃用户数+河北的活跃用户数+……

=北京的新增用户数+北京的留存用户数+北京的回流用户数+河北的新增用户数+河北的留存用户数+河北的回流用户数+……

这里留一个疑问,怎么去选择优先下钻的维度?想明白以后分析的效率就会有很大提升

纵向对比

在进行完横向对比以后,就要开始进行纵向对比,纵向对比主要是在时间维度上,还拿上一个例子来说,我们按照第一种方式进行横向对比以后,就要纵向对比,见下表:

2.2分布分析

分布分析一般是应用的场景比如用累计消费金额去分组/按照用户一个月活跃天数去分组,这些场景都有两个共性的特征:

属性值都是数值类型,或者日期类型

属性值非常多,比如累计消费金额可能从1-90000中间任意一个数字,也就是属性值非常多,没办法用每一个属性值去单独分析,因此需要分组

还是上图说明:

2.3交叉分析

交叉分析一般指多维度交叉,或者不同指标之间的交叉

多维度交叉其实有点类似对比分析的第三类分类方法,这里不在赘述了,还是那个图,但是在实际分析中的作用其实很是强大,具体如何应用就需要大家举一反三啦,仔细看看这张图,可以换成哪些分析场景下的哪些场景的交叉分析:

不同指标交叉一般用在分析变化趋势中,或者寻找相关因素的时候,上图:

这样既能看绝对值的变化,又能一目了然的看出变化趋势,如果不同指标之间呈现一定的相关性,那就是相当完美了

2.4漏斗分析

漏斗分析模型比较好理解了,一般在行为分析中常用到,直接上图吧:

是不是有点眼熟?漏斗分析一般分析应用在分析用户使用某项业务时,经过一系列步骤转化的效果,因为用户会沿着产品设计的路径到达最终目标事件,在分析每一步转化的时候会用到这个模型

2.5矩阵分析

矩阵分析是一个不错的分析模型,主要用在分类上面,常见的有用户分类、产品分类等,比如像常见的RFM模型是一个三维矩阵,有八个象限,上两个图看看:

矩阵分析其实不难理解,但是涉及到一个比较关键的问题,就是临界点怎么选择,通俗来说就是第一象限和第二象限的临界值是多少,有的是0,有的不是0,举个例子:

我想用活跃度和累计消费金额对1万个用户进行分群,使用矩阵分析

我建好了这个二维矩阵,我第一件事就是先要确定原点的坐标值,也就是说用户的累计消费金额大于x,就会出现在第一/四象限,如果小于x,就会出现在第二/三象限,想确定这个值需要一定的方法,会用到一些分类算法,这个可以去网上查一些关于分类的教程,有很多,后续我会写一盘文章来介绍分类,这里就不细讲了

以上就是数据分析最重要的两个模块,当然在实际操作中还有很多需要思考的地方,太细节的东西不太能够面面俱到,这里留给大家去思考的空间,比如:

数据分析报告怎么讲成一个故事,比如背景-现状-原因-策略-预期结果-复盘结果?

每一页PPT怎么排版会让你的数据分析报告可读性更高?

如果你的数据分析报告不采用上述的结构,还能用哪些结构?

怎么让你的数据分析报告显得更高大上?

可以留言交流哦
上一篇:茶品牌营销开题报告PPT 茶叶毕业设计开题报告 下一篇:高中老师简历怎么写

联系我们 | 关于我们 | 公司介绍 | 常见问题

脚步网,高端简历在线制作平台,各行各业的简历模板应有尽有

版权所有 2012-2021 脚步网 琼ICP备2023002197号-5